	PBBA Branded iOS Merchant Button
	
	Appendices

[bookmark: _Toc385322873][bookmark: _GoBack]

PBBA Branded iOS Merchant Button
Implementation Guide
April 2017
Version 4.0

[bookmark: bm_EmailSignaturedocx][bookmark: bm_DOCBLANK_PlusAppendix_0adocx][image:]

[bookmark: bm_ZappGlossaryv40docx][image:]
[bookmark: bm_DOCBLANK_PlusAppendixa0docx]Copyright statement
The information contained in this document is confidential and proprietary to VocaLink Limited, its successors or assignees and (if applicable) its prospective or actual customers/partners. The copyright in this document is owned by VocaLink Limited, or its successors or assignees. This document shall not be used, disclosed or copied in whole or in part for any purposes without the express permission of the owner.
© VocaLink Limited 2017. All rights reserved

[bookmark: _Toc373396383]Document History
	Version
	Date
	Summary of Changes

	2.0
	19-01-2016
	Draft

	2.1
	21-01-2016
	Updated to include all feedback, R2P3 compatible

	2.2
	28-01-2016
	Peer review

	2.3
	21-06-2016
	Peer review

	2.4
	23-06-2016
	Peer review

	2.5
	27-06-2016
	Updated to include review feedbacks

	2.6
	05-07-2016
	Update co-branding assets description and add the requirements for custom schemes support.

	2.7
	21-11-2016
	Updated diagrams, more detailed description

	2.8
	23-11-2016
	Participant review

	2.9
	25-11-2016
	Peer review

	3.0
	30-11-2016
	Participant review and final draft

	3.1
	01-12-2016
	Added integration details for Swift projects

	3.2
	07-12-2016
	Participant review and final draft

	3.3
	15-02-2017
	Add new PBBA configuration key

	3.4
	01-03-2017
	Updated Custom to Integrated

	4.0
	00-00-2017
	Changes to this version

Contents
1	About this document	6
1.1	Introduction	6
1.2	Audience	6
1.3	Scope	6
1.4	Document conventions	6
1.5	Associated documents	6
2	Functional overview	7
2.1	Introduction	7
2.2	M-COMM Journey	7
2.2.1	App Picker	9
2.3	E-COMM Journey	10
3	Technical Overview	12
3.1	Certified devices and OS versions	12
3.1.1	Certified devices and OS versions	12
3.1.2	Supported Languages	12
3.2	Source code	12
3.3	Integrate the Pay by Bank app Branded iOS Merchant Button Library into a Merchant application	13
3.3.1	CocoaPods integration	13
3.3.2	Manual integration	13
3.3.2.1	Build the framework manually from the source and include the output binary into the user project	13
3.3.2.2	Add the Pay by Bank app Branded iOS Merchant Button Library as subproject	14
3.3.3	Branded Pay by Bank app iOS Merchant button library structure	16
3.4	Pay by Bank app Branded iOS Merchant Button	17
3.4.1	Pay by Bank app Button component	18
3.4.2	Pay by Bank app Popup component	18
3.4.2.1	M-COMM Popups	18
3.4.2.2	E-COMM Popups	19
3.4.2.3	Error Popups	20
4	Usage	21
4.1	Introduction	21
4.2	Set up Pay by Bank App Button	21
4.2.1	Configure the button	21
4.2.2	Include the button	21
4.3	Integration Steps of an M-Comm journey	22
4.3.1	Integrate the Pay by Bank app Button	22
4.3.2	Submit payment request to Merchant backend	22
4.3.3	Integrate the Pay by Bank app Popup	23
4.3.3.1	Integrate Popup for Pay by Bank app M-COMM journey	23
4.3.3.2	Integrate PBBA Popup for error handling	24
4.3.4	Get payment status from Merchant backend	25
4.3.5	Display payment confirmation screen	25
4.4	Additional consideration for the integration of an E-COMM (two device) journey	25
4.5	Additional API set	26
4.5.1	API to check if the device has Pay by Bank app enabled CFI App installed	26
4.5.2	API to invoke the Pay by Bank app enabled CFI App	26
5	Sample code	27
A	Appendices	30
A.1	Pay by Bank app Button and Popup configuration	30
Tables
Table 1: 	Certified devices and OS versions	12
Table 2: 	Supported Languages	12
Table 3: 	Pay by Bank app Merchant Button Library integration types	13
Table 4: 	Parameters for `show Pay by Bank app popup’ method call	23
Table 5: 	Parameters for `show Pay by Bank app error popup’ method call	24
Table 6: 	Parameters for `open banking app’ method call	26

Figures
Figure 1: 	Interaction between the components of the M-COMM journey	8
Figure 2: 	App Picker – sample screen	9
Figure 3: 	Interaction between the components of the E-COMM PBBA Code journey	11
Figure 4: 	Branded Pay by Bank app iOS Merchant button library structure	16

	PBBA Branded iOS Merchant Button
	
	Contents

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 4.0

	
	5 of 9
	

[bookmark: _Ref436401018][bookmark: _Toc479686266]About this document
[bookmark: _Toc479686267]Introduction
This documentation describes the Pay by Bank app (PBBA) Merchant Button Library for the iOS Applications. The document focusses on the Pay by Bank app Branded iOS Merchant Button Library behaviour and code and provides a functional and technical overview for M-COMM and E-COMM customer journeys.
The Merchant Button Library is a mandated aspect of Pay by Bank app and must be used for any implementation of Pay by Bank app’s products or services.
Implementation support is available on request.
[bookmark: _Toc479686268]Audience
[bookmark: bm_ZappGlossary40_FINALdocx]This document is intended to be used by external Participants to support the implementation and subsequent use of the Pay by Bank app.
[bookmark: _Toc479686269]Scope
[bookmark: bm_FunctionalSpecifications_40_]The scope of this document covers the implementation of the Pay by Bank app Branded iOS Merchant Button. See section 1.5 Associated documents for more related information outside the scope of this document.
[bookmark: _Toc479686270]Document conventions
The following conventions are specific to this document and are used throughout.
	Convention
	Description

	Important
	Highlights important text in the document.

	Notes
	Provides more information about a topic.

	[bookmark: bm_ProductsandServicesDefinitio]Number Title text
	Hyperlink to another section in the document.

	Italics
	Indicates a document name.

	Courier New
	Indicates code / command.

[bookmark: _Toc479686271]Associated documents
The following provide additional information on topics covered in this document.
Brand Guidelines
PBBA Integrated iOS Merchant Button Implementation Guide
Zapp Glossary
[bookmark: _Ref436216650][bookmark: _Ref436216658][bookmark: _Ref436223694][bookmark: _Toc479686272]Functional overview
[bookmark: _Toc479686273]Introduction
The Pay by Bank app (PBBA) Web Merchant Button supports two different models:
Pay by Bank app Branded iOS Merchant Button with Pay by Bank app Popup
The standard Pay by Bank app iOS Merchant Button with integrated pop-up. This is described in this document.
Pay by Bank app Integrated iOS Merchant Button with Pay by Bank app Popup
Merchants and Distributors can integrate their integrated payment button with the Pay by Bank app Integrated Web Merchant Button. The additional considerations are covered in the PBBA Integrated iOS Merchant Button Implementation Guide document and should be consulted alongside this document.
Contact your Distributor for any Distributor specific implementation updates or amendments.
[bookmark: _Toc479686274]M-COMM Journey
The Merchant App and the Pay by Bank app CFI App are on the same device. A sample Consumer journey includes the following steps.
The Consumer taps a Pay by Bank app button which starts the payment. This document covers the standard Pay by Bank app Branded Merchant Button only.
If this is the first time Pay by Bank app has been used on the device and there is at least one Pay by Bank app enabled CFI App installed on the device then the Pay by Bank app Popup will appear asking the Consumer to either continue his payment on the same device by pressing “Open banking app” or get the PBBA Code to pay on another device.
If this is not a first payment on the device and the user has selected open banking app from before, The Pay by Bank app enabled CFI App on the device is directly invoked.
If there are multiple mobile banking apps then a choice of which one should open will be dealt with by the iOS OS.
The Consumer can approve or cancel the transaction.
When the payment has been completed, the Merchant app displays the payment confirmation page

	PBBA Branded iOS Merchant Button
	
	Functional overview

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 4.0

	
	7 of 9
	

The following sequence diagram shows the interaction between the components of the M-COMM journey.
[bookmark: bm_EIS11PBBABrandediOSMerchantB][image:]
[bookmark: _Ref477782268][bookmark: _Toc479686662]Figure 1: 	Interaction between the components of the M-COMM journey

	PBBA Branded iOS Merchant Button
	
	Functional overview

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 4.0

	
	8 of 10
	

The arrow `8. Invoke Pay by Bank app enabled CFI App using secure token’ describes the action when the Merchant Library opens the CFI App. In case of first time payment, this action happens when the Consumer taps on the `Open Banking app’ button displayed on the M-COMM Popup. The Merchant Library automatically opens the CFI App, there is no user interaction required.
[bookmark: _Toc479686275]App Picker
In case of more than one Pay by Bank app enabled CFI App is installed on the same device as the Merchant App, an App Picker is displayed (see Figure 2: 	App Picker – sample screen below) where the Consumer can select which CFI App they would like to use to complete the Pay by Bank app payment.
	[image:]

	Sample Screen of Native iOS App Picker with two demo CFI Apps (Bank Too and Bank 3)

[bookmark: _Ref477782278][bookmark: _Toc479686663]Figure 2: 	App Picker – sample screen

[bookmark: _Toc479686276]E-COMM Journey
The Merchant App and the Pay by Bank app CFI App are on different devices.
A sample Consumer journey includes the following steps:
The Consumer selects a Pay by Bank app method and taps the button which starts the payment
The Merchant App displays a six letter Pay by Bank app code
On another device, the Consumer opens a Pay by Bank app enabled CFI App and enters the six letter Pay by Bank app code to retrieve the transaction
The Consumer can approve or cancel the transaction
When the Consumer completes the payment journey on the CFI App, the Merchant App (on the first device) displays the payment confirmation page

	PBBA Branded iOS Merchant Button
	
	Functional overview

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 4.0

	
	10 of 12
	

The following sequence diagram shows the interaction between the components of the E-COMM journey.
[image:]
[bookmark: _Toc479686664]Figure 3: 	Interaction between the components of the E-COMM PBBA Code journey

	PBBA Branded iOS Merchant Button
	
	Functional overview

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 4.0

	
	11 of 13
	

[bookmark: _Ref436216985][bookmark: _Toc479686277]Technical Overview
[bookmark: _Ref477530854][bookmark: _Ref477530877][bookmark: _Toc479686278]Certified devices and OS versions
The library supports iOS 8 and up and is certified with the following devices:
[bookmark: _Toc479686279]Certified devices and OS versions
	Device
	Screen Size
	Resolution
	PPI / Scale
	iOS version

	iPhone 5s
	4 inch
	640 x 1136 px
	326 ppi / 2x
	8.1.3

	iPhone 5
	4 inch
	640 x 1136 px
	326 ppi / 2x
	9.1

	iPhone 6
	4.7 inch
	750 x 1334 px
	326 ppi / 2x
	8.3, 10.1.1

	iPhone 6 Plus
	5.5 inch
	1242 x 2208 px
	401 ppi / 3x
	9.3.1

	iPhone 7
	4.7 inch
	750 x 1334 px
	326 ppi / 2x
	10.1.1

	iPhone 7 Plus
	5.5 inch
	1242 x 2208 px
	401 ppi / 2x
	10.1.1

	iPad Air
	9.7 inch
	1536 x 2048 px
	264 ppi / 2x
	9.0.2

[bookmark: _Toc476816168][bookmark: _Toc476831544][bookmark: bm_VocaLink_Blank_DocName_v0ado][bookmark: _Toc479686653]Table 1: 	Certified devices and OS versions
[bookmark: _Toc479686280]Supported Languages
	
	Objective-C

	Supported Languages
	Swift 2.3

	
	Swift 3.0

[bookmark: _Toc479686654]Table 2: 	Supported Languages
[bookmark: _Toc479686281]Source code
To get the source code of the Pay by Bank app Merchant Library, clone the repository (or download it as ZIP package) from GitHub. This document corresponds to the release 1.0.4 of the library on GitHub: https://github.com/vocalinkzapp/ZappMerchantLib-R2-iOS

[bookmark: _Toc479686282]Integrate the Pay by Bank app Branded iOS Merchant Button Library into a Merchant application
The Pay by Bank app Branded iOS Merchant Button Library is for iOS Merchant applications to integrate Pay by Bank app payments.
	
	CocoaPods integration
	Manual integration using a static library/framework
	Manual integration as subproject

	Pay by Bank app Merchant Button Library with Merchant App developed in Objective-C
	YES
	YES
	YES

	Pay by Bank app Merchant Button Library with Merchant App developed in Swift 2.3
	YES
	YES
	YES

	Pay by Bank app Merchant Button Library with Merchant App developed in Swift 3.0
	YES
	YES
	YES

[bookmark: _Toc479686655]Table 3: 	Pay by Bank app Merchant Button Library integration types
[bookmark: _Toc479686283]CocoaPods integration
Add the following line to the Podfile if the CocoaPods dependency manager is being used.
Objective-C projects
pod 'ZappMerchantLib', :git => 'https://github.com/vocalinkzapp/ZappMerchantLib-R2-iOS.git'
Swift projects
use_frameworks!

pod 'ZappMerchantLib', :git => 'https://github.com/vocalinkzapp/ZappMerchantLib-R2-iOS.git'
[bookmark: _Toc479686284]Manual integration
[bookmark: _Toc479686285]Build the framework manually from the source and include the output binary into the user project
Objective-C projects
Follow these procedure steps to generate and integrate the Zapp Merchant Lib framework into the user project.
Procedure steps
Open the ZappMerchantLib.xcworkspace file.
Ensure the workspace is opened – not the project file.
Select ZappMerchantSDK scheme from scheme selection drop-down.
Run the selected scheme.
The folder with build artefacts is exported to ~/Desktop folder. The output folder now contains the following artefacts:
	ZappMerchantLib.framework
	Static framework

	ZappMerchantLibResources.bundle
	Resource bundle

	clibZappMerchantLib.a
	Static library (optional, to be used instead of ZappMerchantLib.framework)

	Headers
	Folder to be used together with libZappMerchantLib.a static lib (optional)

	ZappMerchantLib-docset.zip
	The documentation set.

If the framework documentation is to be exported along with the build artefacts then install the appledoc tool (brew install appledoc).
Add the generated framework ZappMerchantLib.framework to the Link Binary With Libraries section of the Build Phases project.
Add the -ObjC linker flag to the Other Linker Flags field in the Build Settings project.
Add ZappMerchantLibResources.bundle to the Copy Bundle Resources section of the Build Phases project.
Swift projects
The integration steps for Swift projects are the same as for Objective-C plus but with one additional step:
Add the <ZappMerchantLib/ZappMerchantLib.h> import statement to the MerchantApp-Bridging-Header.h file.
It is important to add the library import statement to the Objective-C Bridging Header as it is a static framework which doesn’t define a Swift module.
[bookmark: _Toc479686286]Add the Pay by Bank app Branded iOS Merchant Button Library as subproject
Objective-C projects
Alternatively you can add the Pay by Bank app Branded iOS Merchant Button Library as a subproject to your app project:
Procedure steps
Download the .zip version of the library from Github.
Unarchive the project and copy it to the project folder.
Open the project in Xcode then go to the File menu and select the Add File to “…” option. Browse for the ZappMerchantLib.xcodeproj file.
Go to the Link Binary With Libraries section of the project Build Phases and press the plus (+) button. From the list add the libZappMerchantLib.a static lib to the linked libraries.
Add the -ObjC linker flag to the Other Linker Flags field in the Build Settings project.
Add PATH_TO_MERCHANT_LIB_ROOT_DIRECTORY to the Header Search Paths field in the Build Settings project.
Go to the Copy Bundle Resources section of the Build Phases project and press the plus (+) button. From the list add the ZappMerchantLibResources.bundle to your resources. If there is no ZappMerchantLibResources.bundle in the list, drag on drop it from the Products folder in the ZappMerchantLib subproject.
Swift projects
The integration steps for Swift projects are the same as for Objective-C plus one additional step:
Procedure steps
Add the <ZappMerchantLib/ZappMerchantLib.h> import statement to the MerchantApp-Bridging-Header.h file.
It is important to add the library import statement to the Objective-C Bridging Header as it is a static library which does not define a Swift module.

[bookmark: _Toc479686287]Branded Pay by Bank app iOS Merchant button library structure
The figure below shows the folder structure of the iOS Merchant button library.
[image:]
[bookmark: _Ref478568908][bookmark: _Toc478732733][bookmark: _Toc479686665]Figure 4: 	Branded Pay by Bank app iOS Merchant button library structure
The folders comprise:
	ZappMerchantLib.podspec
	The CocoaPods spec for the library.

	ZappMerchantLib
	Objective-C source files of the library.

	ZappMerchantLibTests
	The unit tests of the library.

	ZappMerchantLibResources
	The Library assets. These comprise:

	
	Fonts

	
	Strings files

	
	Images

	Frameworks
	The system frameworks to which the library should be linked to

	Products
	The project products.

	Pods
	The custom pods used for unit testing (e.g. Kiwi).

[bookmark: _Toc479686288]Pay by Bank app Branded iOS Merchant Button
The Pay by Bank app Branded iOS Button is the standard provided by Zapp.. The Library comes with a button and a Popup. The colours, fonts and styles conform to Pay by Bank app standards (refer to the Brand Guidelines document for more information) and the Button is integrated with the Pay by Bank app Popup and cookie management component.
There are two components associated with the Pay by Bank app Branded Button:
Pay by Bank app button component
Pay by Bank app Popup component
The following diagram describes the Merchant Application structure, the Pay by Bank app Merchant Library components and their interactions.
[image:]
`App Shared Preferences’ shown in the diagram above, is the `NSUserDefaults’ storage of the Merchant App where the Merchant Button Library saves the flag to remember that the Consumer has tapped the `Open banking app’ button on the Pay by Bank app popup. This flag is saved under the key `com.zapp.bankapp.remembered’.

[bookmark: _Toc479686289]Pay by Bank app Button component
This component represents the payment button covering the button press action; selected, highlighted and disabled button states; button animation during payment activity and the logic for co-branding support.
[image:]
[bookmark: _Toc479686290]Pay by Bank app Popup component
This component represents all the PBBA Popups which are shown to Consumers as part of the PBBA payment. The following section outlines the various Popups.
The Popup examples below use the general `your mobile banking app` reference in the text.
[bookmark: _Toc479686291]M-COMM Popups
This pop up is displayed the very first time the PBBA Button is tapped and there is at least one CFI App present on the device. Once the Consumer has pressed the ‘Open banking app’ button, this preference is remembered by the PBBA Branded iOS Merchant Button Library and the PBBA enabled CFI App is opened automatically. This preference is cleared when this automatic opening cannot happen because the Consumer has uninstalled all the PBBA enabled CFI Apps.
	[image:]
	

[image:]

	
	The PBBA Popup that is shown when “Get PBBA Code” is tapped.

	Portrait Mode

	[image:]

	Landscape Mode

[bookmark: _Toc479686292]E-COMM Popups
If there are no Pay by Bank app supported CFI Apps installed on the device, the following pop up is displayed:
	[image:]

	Portrait Mode
	
		Landscape Mode

[bookmark: _Toc479686293]Error Popups
If an error occurs during the payment process, the Merchant can use the Pay by Bank app Popup to present error messages to the Consumer (this is not mandated, the Merchant can use its own method to display error messages to the user).
	[image:]
	

	Sample error Popup without error code
	Sample error Popup with error code

[bookmark: _Toc479686294]Usage
[bookmark: _Toc479686295]Introduction
This chapter describes the recommended way to use the PBBA Branded iOS Merchant Button Library.
[bookmark: _Toc479686296]Set up Pay by Bank App Button
[bookmark: _Toc479686297]Configure the button
The Pay by Bank app button can be configured on demand.
The configuration file is called ‘pbbaCustomConfig.plist’ and it has standard Apple property list file syntax (see Appendix A.1 Pay by Bank app Button and Popup configuration for more information.).
The configuration file should be located in the Merchant App main bundle.
[bookmark: _Toc479686298]Include the button
Add a new View to your storyboard / xib layout and change its class to PBBAButton. The following code snippet shows an example of PBBA Button which is connected as an outlet from storyboard / xib to a view controller.
#import <ZappMerchantLib/PBBAButton.h>

@interface ViewController ()

@property (nonatomic, weak) IBOutlet PBBAButton *pbbaButton;

@end

@implementation ViewController

@end
The minimum Pay by Bank app button size should be 166 x 36 points. The Merchant App may display the Pay by Bank app button in a different size.
Merchant developer should be aware that if values are set to be too small, the Pay by Bank app button may not appear correctly. The sizes of the Pay by Bank app brand images are fixed and do not scale up or down if the button size is increased or decreased.
The text within the Pay by Bank app Branded Button (logo and `Pay by Bank app’ text) will not be rendered in the Xcode Interface Builder because it is not IBDesignable enabled. Due to a Xcode IDE limitation where the IBDesignable views are rendered only from the project sources or dynamic frameworks projects included as subprojects, there is no possibility to support the IBDesignable views for the other types of integrations like static libraries, dynamic frameworks included as binaries or CocoaPods integrations.
[bookmark: _Toc479686299]Integration Steps of an M-Comm journey
The steps to integrate the Pay by Bank app Branded iOS Merchant Button of the M-COMM journey in the Merchant App are as follows:
Procedure steps
Integrate the Pay by Bank app Branded iOS Button.
Submit payment request to Merchant backend.
Integrate the Pay by Bank app Popup (which can Invoke the Pay by Bank app CFI App directly).
Get payment status from Merchant backend.
Dismiss the Pay by Bank app Popup.
Display Merchant payment confirmation screen.
[bookmark: _Toc479686300]Integrate the Pay by Bank app Button
As a next step, the Merchant App should display the Pay by Bank app button. The .onClick event handler of the button should be implemented by the Merchant.
#import <ZappMerchantLib/PBBAButton.h>

@interface ViewController () <PBBAButtonDelegate>

@property (nonatomic, weak) IBOutlet PBBAButton *pbbaButton;

@end

@implementation ViewController

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.pbbaButton.delegate = self;
}

#pragma mark - PBBAButtonDelegate

- (BOOL)pbbaButtonDidPress:(PBBAButton *)pbbaButton
{
 // Start the submit payment request

 // If YES returned then button will disable itself and will start default PBBA animation (only for default configuration).
 // If NO returned then button will not react, remaining enabled.
 return YES;
}

@end
[bookmark: _Toc479686301]Submit payment request to Merchant backend
The .onClick event handler of the Pay by Bank app Button is called when the Consumer taps to the Pay by Bank app Button. The Merchant has to submit a payment request to the Merchant backend.. The format / protocol to use is left open to the Merchant.
[bookmark: _Toc479686302]Integrate the Pay by Bank app Popup
[bookmark: _Toc479686303]Integrate Popup for Pay by Bank app M-COMM journey
The Pay by Bank app Branded iOS Merchant Button Library provides a feature to display the Pay by Bank app branded popups for the payment transaction:
#import <ZappMerchantLib/PBBAAppUtils.h>

// Display PBBA popup
[PBBAAppUtils showPBBAPopup:popupPresenter secureToken:secureToken brn:brn delegate:popupDelegate];
	Parameter name
	Parameter description
	Parameter source

	popupPresenter
	The instance of view controller which will present the PBBA Popup.
	Provided by the Merchant App.

	secureToken
	The unique token that identifies the payment request.
	< Consult Distributor Documentation >

	brn
	The six character code that identifies the payment request for the duration of retrieval timeout period.
	< Consult Distributor Documentation >

	popupDelegate
	The PBBA Popup delegate instance.
	Provided by the Merchant App.

[bookmark: _Toc479686656]Table 4: 	Parameters for `show Pay by Bank app popup’ method call
If the Consumer has tapped the ‘Open banking app’ button before and the device has a Pay by Bank app enabled CFI App installed, this API call invokes to the CFI App immediately (without displaying the Popup). If there is no Pay by Bank app enabled CFI App installed on the Consumer’s device, the Pay by Bank app Popup displays the Pay by Bank app Code automatically.
In order for the library to be able to check if a Pay by Bank app enabled CFI App is installed, it is required to add LSApplicationQueriesSchemes key entry to the application Info.plist file with the string value: zapp. It specifies the common Pay by Bank app URL scheme, used by the Pay by Bank app enabled CFI Apps.
[image:]

How to implement the Popup callback
A callback will be received when the Pay by Bank app Popup is dismissed.
A sample code of how this callback should be implemented is as follows:
#pragma mark - PBBAPopupViewControllerDelegate

- (void)pbbaPopupViewControllerRetryPaymentRequest:(PBBAPopupViewController *)pbbaPopupViewController
{
 // Not applicable for successful responses (only error popup)
}

- (void)pbbaPopupViewControllerDidCloseByUser:(PBBAPopupViewController *)pbbaPopupViewController
{
 // Will be called when the Consumer taps on the top-right corner of the popup and dismissed it.
}
[bookmark: _Toc479686304]Integrate PBBA Popup for error handling
The Pay by Bank app Merchant Button Library provides a feature to display the Pay by Bank app branded error Popup for the payment transaction:
#import <ZappMerchantLib/PBBAAppUtils.h>

// Display PBBA error popup
[PBBAAppUtils showPBBAErrorPopup:popupPresenter errorCode:errorCode errorTitle:errorTitle errorMessage:errorMessage delegate:popupDelegate];

	Parameter name
	Parameter description
	Parameter source

	popupPresenter
	The instance of view controller which will present the Pay by Bank app A Popup.
	Provided by the Merchant App.

	errorCode
	The error code to be displayed along with error message in the Pay by Bank app Popup.
	Provided by the Merchant App.

	errorTitle
	The error title to be displayed along with error message in the Pay by Bank app Popup.
	Provided by the Merchant App.

	errorMessage
	The error message to be displayed in the Pay by Bank app Popup.
	Provided by the Merchant App.

	popupDelegate
	The Pay by Bank app Popup delegate instance.
	Provided by the Merchant App.

[bookmark: _Toc479686657]Table 5: 	Parameters for `show Pay by Bank app error popup’ method call
The length of the strings displayed in the Pay by Bank app error dialog is not limited but the recommended lengths of these strings are:
Maximum 25 characters for the error title
Maximum 75 characters for the error message
Maximum 5 characters for the error code

How to implement the Popup callback
A callback will be received when the Pay by Bank app Popup is dismissed or when the PBBA button inside the error Popup is tapped.
A sample code of how this callback should be implemented is as follows:
#pragma mark - PBBAPopupViewControllerDelegate

- (void)pbbaPopupViewControllerRetryPaymentRequest:(PBBAPopupViewController *)pbbaPopupViewController
{
 // Will be called only when the Consumer taps on the “Pay by Bank app” button on the PBBA error popup
 // The Merchant can retry submitting the payment request
}

- (void)pbbaPopupViewControllerDidCloseByUser:(PBBAPopupViewController *)pbbaPopupViewController
{
 // Will be called when the Consumer taps on the top-right corner of the popup and dismissed it.
}
[bookmark: _Toc479686305]Get payment status from Merchant backend
The Merchant should implement the logic of getting the status of the payment. This status change detection can be implemented in various ways and is up to the Merchant. One way to implement it is to poll the Merchant backend for status change when the Merchant App has displayed the Pay by Bank app (PBBA) Popup and the Merchant App is active (running in the foreground). There is no need to check the payment status while the Merchant App is in the background (for example, because the focus is forwarded to the CFI App). However, the status change detection can start as soon as the PBBA Popup is displayed because if the Consumer does not have a PBBA enabled CFI App installed, the PBBA Popup displays the PBBA code and the payment authorisation can happen in a separate device.
[bookmark: _Toc479686306]Display payment confirmation screen
The Merchant should display their payment confirmation screen once the payment status of the transaction is known.
[bookmark: _Toc479686307]Additional consideration for the integration of an E-COMM (two device) journey
There are no additional changes required for an E-COMM journey.
The Pay by Bank app Merchant Library framework automatically recognises that there is no Pay by Bank app enabled CFI App installed on the device and displays the E-COMM version of the Pay by Bank app Popup.
[bookmark: _Toc479686308]Additional API set
[bookmark: _Toc479686309]API to check if the device has Pay by Bank app enabled CFI App installed
Using this API, the Merchant App can check if the Consumer’s device has at least one PBBA enabled CFI App installed. Zapp recommends not to cache the response but call this API every time they want to check before any Pay by Bank app Popup invocation.
#import <ZappMerchantLib/PBBAAppUtils.h>

// Check if Consumer's device supports PBBA payments
if ([PBBAAppUtils isCFIAppAvailable]) {
 // The device has PBBA enabled CFI App installed
} else {
 // The device does not have PBBA enabled CFI App installed
}
This is an optional utility API which might be used for testing purpose.
[bookmark: _Toc479686310]API to invoke the Pay by Bank app enabled CFI App
The Merchant Library provides a feature to invoke the Pay by Bank app enabled CFI App outside the Pay by Bank app Popup. Zapp recommends not to use this function unless it is completely necessary:
#import <ZappMerchantLib/PBBAAppUtils.h>

// Invoke the PBBA CFI App
[PBBAAppUtils openBankingApp:secureToken];
This invocation happens automatically if the Merchant App calls the Pay by Bank app Popup invocation.
	Parameter name
	Parameter description
	Parameter source

	secureToken
	The unique token that identifies the payment request.
	< Consult Distributor Documentation >

[bookmark: _Toc479686658]Table 6: 	Parameters for `open banking app’ method call
This is an optional utility API which might be used for testing purpose.

	PBBA Branded iOS Merchant Button
	
	Usage

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 4.0

	
	26 of 30
	

[bookmark: _Toc479686311]Sample code
This section describes a frame of a simplified sample implementation of the PBBA Branded iOS Merchant Button Library for the M-COMM journey. The code displayed in black relates to the PBBA Branded iOS Button Library. The code displayed in blue are Merchant App related.
This is not compilable code as it assumes some of the Merchant specific codebase.
#import <ZappMerchantLib/ZappMerchantLib.h>

#import "MerchantPaymentViewController.h"

@interface MerchantPaymentViewController () <PBBAButtonDelegate, PBBAPopupViewControllerDelegate>

@property (nonatomic, weak) IBOutlet PBBAButton *pbbaButton;

@property (nonatomic, strong) MerchantNetworkService networkService;
@property (nonatomic, strong) MerchantPaymentDetails paymentDetails;

@end

@implementation MerchantPaymentViewController

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.pbbaButton.delegate = self;
}

- (void)submitPayment
{
 // The Merchant App uses the network service to make an async HTTP request to the Merchant gateway.
 // Merchant network service receives the response e.g. in JSON format, parses it to an object which is called e.g.
 // Transaction and returns this object in the provided callback. An error object is returned if payment request fails.
 [self.networkService submitPaymentRequest:self.paymentDetails completion:^(Transaction *transaction, NSError *error) {

 if (error) {
 [self didReceiveError:error];
 } else {
 [self didReceiveTransaction:transaction];
 }
 }];
}

- (void)getPaymentStatus
{
 // Here the Merchant App e.g. can wait for 5 seconds not to put heavy load on its backend
 // then make a request to the Merchant gateway, load its response e.g. in JSON format, parse it to
 // an enum type e.g. PaymentStatus
 [self.networkService getPaymentStatus:^(PaymentStatus status, NSError *error) {

 if (error) {
 [self didReceiveError:error];
 } else {
 [self didReceivePaymentStatus:status];
 }
 }];
}

#pragma mark - Request Callbacks

- (void)didReceiveTransaction:(Transaction *transaction)
{
 // In case of standard M-Comm:
 // If it is the very first time payment then the PBBA popup will appear.
 // If this is not the first payment then this will invoke PBBA enabled CFI App automatically without a PBBA Popup displayed.
 // In case of standard E-Comm: this will display the PBBA Popup with the PBBA code.
 [PBBAAppUtils showPBBAPopup:self
 secureToken:transaction.secureToken
 brn:transaction.brn
 delegate:self];

}

- (void)didReceiveError:(NSError *error)
{
 [PBBAAppUtils showPBBAErrorPopup:self
 errorCode:nil
 errorTitle:NSLocalizedString(@"Error", nil)
 errorMessage:error.localizedDescription
 delegate:self];
}

- (void)didReceivePaymentStatus:(PaymentStatus status)
{
 if (status == PaymentStatusInProgress) {
 [self getPaymentStatus];
 } else
 // For M-Comm payment finished, display Merchant payment status page
 // For E-Comm payment finished, dismiss PBBA Popup
 }
}

#pragma mark - PBBAButtonDelegate

- (BOOL)pbbaButtonDidPress:(PBBAButton *)paymentButton
{
 [self submitPayment];

 return YES; // PBBA button will start animating automatically
}

#pragma mark - PBBAPopupViewControllerDelegate

- (void)pbbaPopupViewControllerRetryPaymentRequest:(PBBAPopupViewController *)pbbaPopupViewController
{
 // This method is called only when the Consumer clicks on the ‘Pay by Bank app’ button
 // on the PBBA error popup
 [self submitPayment];
}

- (void)pbbaPopupViewControllerDidCloseByUser:(PBBAPopupViewController *)pbbaPopupViewController
{
 // This method is called on any PBBA popup when the Consumer taps the dismiss button
 // on the top-right corner of the PBBA popup
 self.pbbaButton.enabled = YES;
}

@end

	PBBA Branded iOS Merchant Button
	
	Sample code

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 4.0

	
	29 of 29
	

[bookmark: _Ref436217384][bookmark: _Ref436217396][bookmark: _Toc479686312]Appendices
[bookmark: _Ref479178069][bookmark: _Ref479178103][bookmark: _Toc479686313]Pay by Bank app Button and Popup configuration
The custom configuration file is called `pbbaCustomConfig.properties’ – it has standard Java properties file syntax and it is in the `assets’ folder of the library or Merchant App.
The custom theme of the Pay by Bank app button can be configured using the “pbbaTheme” key. There are three themes supported:
	1
	[bookmark: bm_Chapter_Pdocx]imageKey = 1 (default)
Standard orange Pay by Bank app assets on the Pay by Bank app buttons
	[bookmark: bm_EIS11PBBAWebBrandedMerchantB][image:]

	2
	imageKey = 2
Barclays / Pay by Bank app light
co-branded assets on the Pay by Bank app buttons
	[image:]

	3
	imageKey = 3
Barclays / Pay by Bank app dark
co-branded assets on the Pay by Bank app buttons
	[image:]

The CFI App name used in the Popup can be configured using the “cfiAppName” key. There are two options available:
cfiAppName = 1 (default)
Popup generally refers to “your mobile banking app”.
[image:]
The text in the Popup is “Log in to your mobile banking app”.

cfiAppName = 2
Pingit will be referenced in the Popup.
[image:]
The text in the Popup is “Log in to Pingit”.
It is important to mention that cfiAppName key change takes effect only when the default theme is selected (pbbaTheme=1).
	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 4.0

	
	31 of 31
	

image3.emf
Merchant Application

Merchant App Module Distributor PBBA PBBA Merchant Library CFI Gateway

Pay by Bank enabled CFI

App

Merchant Backend

5. start payment

5.4 secure token/ PBBA code

5.1: start payment

5.3 create merchant transaction

10.1 retrieve transaction details

10.2 transaction details

10. retrieve transaction details

10.3 transaction details

12. update payment status

12.1. Update payment progress

12.2 . Payment status updated

12.3. payment status updated

16. Poll for merchant payment status

7.10 poll for distributor payment status

7.11 payment status

16.1 payment in progress

16.2. poll for merchant payment status

16.3 payment status

17.1 Popup closed callback

18. Display payment confirmation message

based on merchant payment status

9.User

authenticates

11 User accepts or

declines payment

5.2 secure token/ PBBA code

5.1.2 secure token/ PBBA code

2. add item to shopping cart

2.1 item is added to the shopping cart

3. go to the checkout page

1. browse catalogue

4. Select payment method

(Pay by Bank app)

4.1 User taps on PBBA button

4.1 Tap event forwarded

to App Module

5.1.1: submit ‘request to pay’ to PBBA

15. CFI app invokes merchant app using ‘merchant callback url’

6. Display PBBA popup

7. poll for distributor payment status

7.1 ‘payment in progress’

7.2 poll for distributor payment status

7.3 ‘payment in progress’

7.4 poll for distributor payment status

7.5 ‘payment in progress’

7.6 poll for distributor payment status

7.7 ‘payment in progress’

7.8 poll for distributor payment status

7.9 ‘payment in progress’

8. invoke Pay by Bank app enabled CFI app using secure token

(on user interaction or automatically)*

12.4. payment status notification

17. Close popup

5.5 Poll for merchant payment status

5.6 payment in progress

image4.png
Merchant De... eesese = 10:32 70 % 63% M)

Cancel & Your apps

Choose the app to open

Bank Too

Bank 3 v

Done

image5.emf
Distributor PBBA CFI Gateway

Pay by Bank enabled CFI

App

Merchant Backend

1. browse catalogue

3. go to the checkout page

2. add item to shopping cart

2.1 item is added to the shopping cart

5. start payment

5.1: start payment

5.1.3 secure token/ PBBA Code

9. poll for distributor payment status

12.1: distributor payment status

5.1.1: submit ‘request to pay’ to Zapp

5.2 create merchant transaction

11.3: payment notification

10.1: retrieve transaction details

10.2: transaction details

11.1: update payment status

11.2: payment status update

10.3 transaction details

11.3: payment status updated

11. update payment status

10: user approves or cancels payment

8.1. poll for merchant payment status

8.6.1 merchant payment status

7: user authenticates

and enters PBBA code

4. Select payment method

(Pay by Bank app)

5.3 secure token / PBBA code

9.1 ‘payment in progress’

8.1.1 ‘payment in progress’

8.2. poll for merchant payment status

8.2.1 ‘payment in progress’

8.3 poll for merchant payment status

11 poll for distributor payment status

8.3.1 ‘payment in progress’

11.1. ‘payment in progress’

8.4 poll for merchant payment status

8.4.1 ‘payment in progress’

8.5 poll for merchant payment status

12 poll for distributor payment status

8.5.1 ‘payment in progress’

8.6 payment status

5.1.2 secure token/ PBBA code

10: retrieve transaction details

PBBA Merchant Lib Merchant App Module

5.5 display PBBA code in popup

5.4 show PBBA popup

13. dismiss PBBA popup

13.1 popup dismissed

4.1 User taps on PBBA button

4.2 Tap event

forwarded to App

module

14. display payment confirmation message

Based on merchant payment status

image6.png
v h ZappMerchantLib.xcodeproj
ZappMerchantLib.podspec
¥ [ZappMerchantLib
» [utils
» [Protocols
» [Categories
» [7] Ul Elements
h ZappMerchantLib.h
» [Supporting Files
» [7] ZappMerchantLibTests
¥ [7] ZappMerchantLibResources
v [Resources
» [Localisation
» [Fonts
[Media.xcassets
» [Supporting Files
» [Frameworks
» [Products
» [Pods

image7.emf
Merchant Application

App PBBA Custom

Config file

App Shared

Preferences

PBBA Merchant Library

PBBA Popup

Component

PBBA Button

Component

Get / Set “Open Banking App”

user choice

Load configuration Load configuration

image8.png
|__i| Pay by Bank app

image9.png
[Z Pay by Bank app

Tap the button below to open your
mobile banking app and log in to
complete your purchase

Open banking app

Pay with another device

Tap the button below if your mobile
banking app is on another device

Get [ZlCode

What s Pay by Bank app? >

image10.png
2 PaybyBankapp

Pickup your phone or tablet
| Loginto your mobile banking app
| selectPay by Bank app

Enterthe ¢l Code below

H Q K|[6 k ¢

Whatis pay by Bank app? >

image11.png
4 Pay by Bank app

Pay on this device

mobile banking app and logn to

Tap the button below to open your
complete your purchase

Open banking app

Pay on another device

Pickup your phone or tablet
| Loginto your mobile banking app
| selectpay by Bankapp.

Enterthe (] Code below

H Q K

Whatis Pay by Bankapp? >

image12.png
£ Payby Bankapp

None ofthe apps on this device
currently support Pay by Bank app.

Follow the steps below to complete
this purchase on another device:

Piccup your phoneor tablet:
| Loginto your mobile banking app
| Selctayby Bankapp

Enterthe £ Code below

Whatis Pay by Bankapp?

2 Pay by Bank app

Pay on another device

None of the apps on this device

currently support Pay by Bank app. Pickup your phone or tablet

| Loginto your mobile banking app
| SelectPay by Bank app
Enterthe (] Code below

Follow the steps on the right to
complete this purchase on another
device

(R x s][ar P

Whatis Pay by Bank app? >

image13.png
PN

Network error.

Network connection not available.
Please try to connect before using.

[Z Pay by Bank app

Whatis Pay by Bank app? >

image14.png
VA

Payment request expired

Tap on the button below to try again
(A9.3.1/A10.3.1).

[Pay by Bank app

What s Pay by Bank app? »

image15.png
¥ LSApplicationQueriesSchemes 4 Array (1item)
tem 0 String zapp

image16.png
Pay with (O pingit | Lﬂgg?.n?%’pp
[]

image17.png
Pay by
Pay with p pingit ‘ @Bgnkapp

image18.tif
O\

None of apps on this device currently support
Pay by Bank app.

Follow the steps below to complete this
purchase on another device:

Pick up your phone or tablet

I Log in to your mobile banking app

I Select Pay by Bank app

Enter the @Code below

[k w][n s v

What is Pay by Bank app? »

image19.tif
2 Pay by Bank app

None of the apps on this device
currently support Pay by Bank app.

Follow the steps below to complete
this purchase on another device:

Pick up your phone or tablet
I Login to Pingit
I Select Pay by Bank app
Enter the [2 Code below

What is Pay by Bank app? »

image1.png
@ vocaLink

image2.png
Pay by
EFI Bagk app

