	PBBA Integrated Android Merchant Button
	
	Appendices

[bookmark: _Toc385322873][bookmark: _GoBack]

PBBA Integrated Android Merchant Button
Implementation Guide
April 2017
Version 2.0

[bookmark: bm_EmailSignaturedocx][bookmark: bm_DOCBLANK_PlusAppendix_0adocx][image:]

[bookmark: bm_ZappGlossaryv40docx][image:]
[bookmark: bm_DOCBLANK_PlusAppendixa0docx]Copyright statement
The information contained in this document is confidential and proprietary to VocaLink Limited, its successors or assignees and (if applicable) its prospective or actual customers/partners. The copyright in this document is owned by VocaLink Limited, or its successors or assignees. This document shall not be used, disclosed or copied in whole or in part for any purposes without the express permission of the owner.
© VocaLink Limited 2017. All rights reserved

[bookmark: _Toc373396383]Document History
	Version
	Date
	Summary of Changes

	1.0
	22-11-2016
	Draft

	1.1
	23-11-2016
	Peer review

	1.2
	25-11-2016
	Updated sequence diagrams, peer reviews

	1.3
	30-11-2016
	Participant review and final draft

	1.4
	06-12-2016
	Peer review

	1.5
	16-02-2017
	Add new PBBA configuration key

	1.6
	01-03-2017
	Updated Custom to Integrated

	4.0
	00-00-2017
	Changes to this version

Contents
1	About this document	6
1.1	Introduction	6
1.2	Audience	6
1.3	Scope	6
1.4	Document conventions	6
1.5	Associated documents	6
2	Functional overview	7
2.1	Introduction	7
2.2	M-COMM Journey	7
2.2.1	App Picker	9
2.3	E-COMM Journey	10
3	Technical Overview	12
3.1	Certified devices and OS versions	12
3.1.1	Phone	12
3.1.2	Tablet	12
3.1.3	Third party components used	13
3.2	Source code	13
3.3	Integrate the Pay by Bank app Integrated Android Merchant Button Library into a Merchant application	13
3.3.1	Build the library from source	13
3.3.1.1	Gradle (on Mac)	13
3.3.1.2	Gradle (on Windows)	13
3.3.2	Import the library (.aar) to the Merchant Application	14
3.3.2.1	Android Studio:	14
3.3.3	Pay by Bank app Integrated Android Merchant button library structure	14
3.4	Pay by Bank app Integrated Android Merchant Button	15
3.4.1	Pay by Bank app Popup component	16
3.4.1.1	Error Popups	16
3.4.1.2	E-COMM Popups	17
3.4.1.3	Error Popups	18
4	Usage	19
4.1	Introduction	19
4.2	Integration Steps of an M-Comm journey	19
4.2.1	Implement the Integrated Android Merchant Button	19
4.2.2	Submit payment request to Merchant backend	19
4.2.3	Integrate the Pay by Bank app Popup	20
4.2.3.1	Integrate popup for Pay by Bank app M-COMM journey	20
4.2.3.2	Integrate Pay by Bank app Popup for error handling	21
4.2.4	Get payment status from Merchant backend	22
4.2.5	Display payment confirmation screen	22
4.3	Additional consideration for the integration of an E-COMM (two device) journey	22
4.4	Additional API set	22
4.4.1	API to check if the device has Pay by Bank app enabled CFI App installed	22
4.4.2	API to invoke the Pay by Bank app enabled CFI App	23
4.4.3	Pay by Bank app Popup orientation change support	23
5	Sample code	24
A	Appendices	27
A.1	Pay by Bank app Button and Popup configuration	27
Tables
Table 1: 	Certified devices and OS versions - Phone	12
Table 2: 	Certified devices and OS versions - Tablet	12
Table 3: 	Third party components used	13
Table 4: 	Response to Request to Pay mapping	20
Table 5: 	Error mapping	21
Table 6: 	CFI App invocation mapping	23

Figures
Figure 1: 	Interaction between the components of the M-COMM journey	8
Figure 2: 	App Picker – sample screen	9
Figure 3: 	Interaction between the components of the E-COMM PBBA Code journey	11
Figure 4: 	Integrated Pay by Bank app Android Merchant button library structure	14

	PBBA Integrated Android Merchant Button
	
	Contents

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 2.0

	
	5 of 9
	

[bookmark: _Ref436401018][bookmark: _Toc479684727]About this document
[bookmark: _Toc479684728]Introduction
[bookmark: bm_PBBABrandedAndroidMerchantBu]This documentation describes the Pay by Bank app (PBBA) Merchant Button Library for Android Applications. The document focusses on the Pay by Bank app Integrated Android Merchant Button Library behaviour and code and provides a functional and technical overview for M-COMM and E-COMM customer journeys using an Integrated Merchant Button.
The Merchant Button Library is a mandated aspect of Pay by Bank app and must be used for any implementation of Pay by Bank app’s products or services.
Implementation support is available on request.
[bookmark: _Toc479684729]Audience
[bookmark: bm_ZappGlossary40_FINALdocx]This document is intended to be used by external Participants to support the implementation and subsequent use of the Pay by Bank app.
[bookmark: _Toc479684730]Scope
[bookmark: bm_FunctionalSpecifications_40_]The scope of this document covers the implementation of the Pay by Bank app Integrated Android Merchant Button. See section 1.5 Associated documents for more related information outside the scope of this document.
[bookmark: _Toc479684731]Document conventions
The following conventions are specific to this document and are used throughout.
	Convention
	Description

	Important
	Highlights important text in the document.

	Notes
	Provides more information about a topic.

	[bookmark: bm_ProductsandServicesDefinitio]Number Title text
	Hyperlink to another section in the document.

	Italics
	Indicates a document name.

	Courier New
	Indicates code / command.

[bookmark: _Toc479684732]Associated documents
The following provide additional information on topics covered in this document.
Brand Guidelines
PBBA Branded Android Merchant Button Implementation Guide
Zapp Glossary
[bookmark: _Ref436216650][bookmark: _Ref436216658][bookmark: _Ref436223694][bookmark: _Toc479684733]Functional overview
[bookmark: _Toc479684734]Introduction
The Pay by Bank app (PBBA) Web Merchant Button supports two different models:
Pay by Bank app Branded Android Merchant Button with Pay by Bank app popup
The standard Pay by Bank app Android Merchant Button with integrated pop-up. This is described in this document.
Pay by Bank app Integrated Android Merchant Button with Pay by Bank app Popup
Merchants and Distributors can integrate their integrated payment button with the Pay by Bank app Integrated Web Merchant Button. The additional considerations are covered in the PBBA Branded Android Merchant Button Implementation Guide document and should be consulted alongside this document.
Contact your Distributor for any Distributor specific implementation updates or amendments.
[bookmark: _Toc479684735]M-COMM Journey
The Merchant App and the Pay by Bank app CFI App are on the same device. A sample Consumer journey includes the following steps.
The Consumer selects a Pay by Bank app method and taps on a user interface element which starts the payment
This document assumes that this user interface element is a Merchant Integrated Button.
If this is the first time PBBA has been used on the device and there is at least one PBBA enabled CFI App installed on the device then the PBBA popup will appear asking the Consumer to either continue their payment on the same device by pressing `Open banking app’ or get the PBBA Code to pay on another device
If this is not a first payment on the device and the Consumer has selected ‘open banking app’ from before, the Pay by Bank app enabled CFI App on the device is directly invoked
If there are multiple mobile banking apps then a choice of which one should open is determined by the Android OS
The Consumer can approve or cancel the transaction
When the payment has been completed, the Merchant App displays the payment confirmation page

	PBBA Integrated Android Merchant Button
	
	Functional overview

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 2.0

	
	7 of 9
	

The following sequence diagram shows the interaction between the components of the M-COMM journey.
[bookmark: bm_EIS11PBBAIntegratedAndroidMe][image:]
[bookmark: _Ref477782268][bookmark: _Toc479341714]Figure 1: 	Interaction between the components of the M-COMM journey

	PBBA Integrated Android Merchant Button
	
	Functional overview

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 2.0

	
	8 of 10
	

The arrow `8. Invoke Pay by Bank app enabled CFI App using secure token’ describes the action when the Merchant Library opens the CFI App. In case of first time payment, this action happens when the Consumer taps on the ‘Open Banking app’ button displayed on the M-COMM Popup. The Merchant Library automatically opens the CFI App, there is no user interaction required.
[bookmark: _Toc479684736]App Picker
In case of more than one Pay by Bank app enabled CFI App is installed on the same device as the Merchant App an App Picker is displayed (see Figure 2: 	App Picker – sample screen below) where the Consumer can select which CFI App they would like to use to complete the Pay by Bank app payment.
	[image: C:\Users\miklos.sagi\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\Screenshot_20161122-113137.png]

	Sample Screen of Native Android App Picker with two demo CFI Apps (Bank Too and Bank 3)

[bookmark: _Ref477782278][bookmark: _Toc479341715]Figure 2: 	App Picker – sample screen

[bookmark: _Toc479684737]E-COMM Journey
The Merchant App and the Pay by Bank app CFI App are on different devices.
A sample Consumer journey includes the following steps:
The Consumer selects a Pay by Bank app method and taps the button (see note below) which starts the payment
This document assumes the user interface element is a Merchant Integrated Button.
The Merchant App displays a six letter PBBA code
On another device, the Consumer opens a Pay by Bank app enabled CFI App and enters the six letter PBBA code to retrieve the transaction
The Consumer can approve or cancel the transaction
When the Consumer completes the payment journey on the CFI App, the Merchant App (on the first device) displays the payment confirmation page

	PBBA Integrated Android Merchant Button
	
	Functional overview

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 2.0

	
	10 of 12
	

The following sequence diagram shows the interaction between the components of the E-COMM journey.
[image:]
[bookmark: _Toc479341716]Figure 3: 	Interaction between the components of the E-COMM PBBA Code journey

	PBBA Integrated Android Merchant Button
	
	Functional overview

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 2.0

	
	11 of 13
	

[bookmark: _Ref436216985][bookmark: _Toc479684738]Technical Overview
[bookmark: _Ref477530854][bookmark: _Ref477530877][bookmark: _Toc479684739]Certified devices and OS versions
The library supports Android 2.3 Gingerbread (API 9) and up and is certified with the following devices:
[bookmark: _Toc479684740]Phone
	Device
	Screen size
	Resolution
	Class
	Android version

	Samsung Galaxy S (I9000)
	4.0”
	480x800px
320x533dp
	Hdpi
233ppi
	V2.3

	Samsung Galaxy Nexus (I9250)
	4.65”
	720x1280px
360x640dp
	Xhdpi
316ppi
	V4.2.2

	Nexus 5 (D821)
	4.97”
	1080x1920px
360x640dp
	Xxhdpi
442ppi
	V5.1

	Samsung Galaxy S5 (Genymotion, KTU84P)
	5.1”
	1080x1920px
360x640dp
	Xxhdpi
432ppi
	V4.4.4

	Samsung Galaxy S6 (SM-920F)
	5.1”
	1440x2560px360
x640dp
	Xxxhdpi
577ppi
	V6.0.1

	Android Virtual Device (Nexus 6P)
	5.7”
	1440x2560px
360x640dp
	Xxxhdpi
577ppi
	V7.0.1

	Android Virtual Device (Nexus 6P)
	5.7”
	1440x2560px
360x640dp
	Xxxhdpi
577ppi
	V7.1.1

[bookmark: _Toc476816168][bookmark: _Toc476831544][bookmark: bm_VocaLink_Blank_DocName_v0ado][bookmark: _Toc479341704]Table 1: 	Certified devices and OS versions - Phone
[bookmark: _Toc479684741]Tablet
	Device
	Screen size
	Resolution
	Class
	Android version

	Samsung Galaxy Tab 3 (GT-P5210)
	10.1”
	1280x800px
1280x800dp
	Mdpi
160ppi
	V4.4

[bookmark: _Toc479341705]Table 2: 	Certified devices and OS versions - Tablet

[bookmark: _Toc479684742]Third party components used
	Third Party Components used in Merchant Library
	Version

	Android support library
	Android support library	Version 24.1.0

[bookmark: _Toc479341706]Table 3: 	Third party components used
[bookmark: _Toc479684743]Source code
To get the source code of the Pay by Bank app Merchant Library, clone the repository (or download it as ZIP package) from GitHub: https://github.com/vocalinkzapp/ZappMerchantLib-R2-Android
[bookmark: _Toc479684744]Integrate the Pay by Bank app Integrated Android Merchant Button Library into a Merchant application
ZappMerchantLibrary is for Android Merchant applications to integrate Pay by Bank app payments.
[bookmark: _Toc479684745]Build the library from source
Using the source code and building it to the third party merchant App is the recommended way to use the library. Download the source code of the library from GitHub (see Appendix A), make the necessary configuration, build the library as a module and import it to the Merchant App.
[bookmark: _Toc479684746]Gradle (on Mac)
Procedure steps
Open a Terminal Window.
Change directory to be the root folder of the library
Execute command ./gradlew :zapp-merchant-library:assembleRelease (the release Android Archive of the library (zapp-merchant-library-release.aar) is located in the ./zapp-merchant-library/build/outputs/aar folder).
[bookmark: _Toc479684747]Gradle (on Windows)
Procedure steps
Open a Command Prompt Window.
Change directory to be the root folder of the library
Execute command gradlew :zapp-merchant-library:assembleRelease (the release Android Archive of the library (zapp-merchant-library-release.aar) is located in the zapp-merchant-library/build/outputs/aar directory).

[bookmark: _Toc479684748]Import the library (.aar) to the Merchant Application
Import the release version Pay by Bank app Merchant Library .aar to the Merchant Application Project.
[bookmark: _Toc479684749]Android Studio:
Procedure steps
Select File / New / New Module.
Select Import .JAR or .AAR package.
Click Next.
Browse zapp-merchant-library-release.aar file in to the File name field
Enter `zapp-merchant-library-2.0.0’ in to the Subproject name field.
Click Finish.
Add dependency compile project(‘:zapp-merchant-library-2.0.0’) in gradle file of the Merchant App module.
[bookmark: _Toc479684750]Pay by Bank app Integrated Android Merchant button library structure
The figure below shows the folder structure of the Android Merchant button library.
[image:]
[bookmark: _Ref478568908][bookmark: _Toc478732733][bookmark: _Toc479341717]Figure 4: 	Integrated Pay by Bank app Android Merchant button library structure
The folders comprise:
	Manifests
	This contains an empty manifest file (required for the Android library)

	Java
	The Android / Java source files of the Library

	Assets
	Fonts – the PBBA custom font files.
pbbaCustomConfig.properties – the custom configuration file.

	Res
	The resource files (images, dimensions, strings)

	Gradle scripts
	The Gradle build scripts

[bookmark: _Toc479684751]Pay by Bank app Integrated Android Merchant Button
The popup component is the only component provided by the Pay by Bank app Integrated Android Merchant Button Library.
The payment button is provided by the Merchant Application. The following diagram describes the Integrated Android Merchant Button implementation when the Merchant Application structure interacts with the Pay by Bank app Integrated Android Merchant Library components.
The following diagram describes the Merchant Application structure, the Pay by Bank app Merchant Library components and their interactions.
[image:]
The `App Shared Preferences’ shown in the diagram above is the default shared preferences of the Merchant App where the Merchant Button Library saves the flag to remember if the user has tapped `Open banking app’ button on the Pay by Bank app Popup. This flag is saved under the key `openBankingAppButtonClicked’.

[bookmark: _Toc479684752]Pay by Bank app Popup component
This component represents all the Pay by Bank app Popups which are shown to Consumers as part of the PBBA payment. The following section outlines the various Popups.
The Popup examples below use the general `your mobile banking app’ reference in the text.
[bookmark: _Toc479684753]Error Popups
This is the pop up displayed the very first time the Pay by Bank app Button is tapped and there is at least one CFI App present on the device. Once the Consumer has pressed the ‘Open banking app’ button, this preference is remembered by the Pay by Bank app Integrated Android Merchant Button Library and the Pay by Bank app enabled CFI App is opened automatically. This preference is cleared when this automatic opening cannot happen because the Consumer has uninstalled all the Pay by Bank app enabled CFI Apps.
	[image:]
	

[image:]

	
	The PBBA Popup that is shown when `Get PBBA Code’ is tapped.

	Portrait Mode

	[image:]

	Landscape Mode

[bookmark: _Toc479684754]E-COMM Popups
If there are no Pay by Bank app supported CFI Apps installed on the device, the following pop up is displayed:
	[image:]

	Portrait Mode
	
		Landscape Mode

[bookmark: _Toc479684755]Error Popups
If an error occurs during the payment process, the Merchant can use the Pay by Bank app Popup to present error messages to the Consumer (this is not mandated, the Merchant can use its own method to display error messages to the user).
	[image:]
	

	Sample error Popup without error code
	Sample error Popup with error code

[bookmark: _Toc479684756]Usage
[bookmark: _Toc479684757]Introduction
This chapter describes the recommended way to use the Pay by Bank app Integrated Android Merchant Button Library.
[bookmark: _Toc479684758]Integration Steps of an M-Comm journey
The steps to integrate the Pay by Bank app Integrated Android Merchant Button of the M-COMM journey in the Merchant App are as follows:
Procedure steps
Implement the Integrated Android Merchant Button.
Submit payment request to Merchant backend.
Integrate the Pay by Bank app Popup (which can Invoke the Pay by Bank app CFI App directly).
Get payment status from Merchant backend.
Dismiss the Pay by Bank app Popup.
Display Merchant payment confirmation screen.
[bookmark: _Toc479684759]Implement the Integrated Android Merchant Button
The Integrated Android Merchant Button should be implemented by the Merchant. The rendering and the tap event handling of the Integrated Android Merchant Button should be provided by the Merchant Application.
//in the Activity (or Fragment) of the payment method selection screen...
//(...)

//in the .onCreate(Bundle) method of the Activity...
final Button button = (CustomMerchantButton) findViewById(R.id.custom_merchant_button);
button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(final View v) {
	//the Merchant App can start submitting the payment request
 }
});
[bookmark: _Toc479684760]Submit payment request to Merchant backend
The .onClick event handler of the Integrated Android Merchant Button is called when the Consumer taps the button. The Merchant has to submit a payment request to the Merchant backend. The format / protocol to use is left open to the Merchant.

[bookmark: _Toc479684761]Integrate the Pay by Bank app Popup
[bookmark: _Toc479684762]Integrate popup for Pay by Bank app M-COMM journey
The Integrated Android Merchant Button Library provides a feature to display the Pay by Bank app branded popups for the payment transaction:
import com.zapp.library.merchant.util.PBBAAppUtils;

//(...)

// display PBBA Popup (provide an android.support.v4.app.FragmentActivity, secureToken, BRN and callback parameters)
PBBAAppUtils.showPBBAPopup(/* activity */ this, secureToken, brn, callback);
	Parameter name
	Parameter description
	Parameter source

	activity
	The fragment activity in the Merchant App.
	Provided by the Merchant App

	secureToken
	The unique token that identifies the payment request.
	< Consult Distributor Documentation >

	brn
	The six character code that identifies the payment request for the duration of retrieval timeout.
	< Consult Distributor Documentation >

	callback
	PBBACallback implementation that receives callback events. Please see section ‘How to implement the Popup Callback’ for sample code on how to implement the callback.
	Provided by the Merchant App

[bookmark: _Toc479341707]Table 4: 	Response to Request to Pay mapping
If the Consumer has tapped the ‘Open banking app’ button before and the device has a Pay by Bank app enabled CFI App installed, this API call invokes to the CFI App immediately (without displaying the popup). If there is no Pay by Bank app enabled CFI App installed on the Consumer’s device, the Pay by Bank app Popup displays the PBBA Code automatically
How to implement the Popup callback
A callback will be received when the Pay by Bank app Popup is dismissed.
A sample code of how this callback should be implemented is as follows:
import com.zapp.library.merchant.ui.PBBAPopupCallback;

//(...)

// display PBBA Popup (provide an android.support.v4.app.FragmentActivity, secureToken, BRN and callback parameters)
Final PBBAPopupCallback mPopupCallback = new PBBAPopupCallback() {
	onRetryPaymentRequest() {
		//not applicable for successful responses
	}
	
	onDismissPopup() {
		//will be called on the PBBA popup when the Consumer taps on the top-right corner of the popup and
		//and dismissed it
	}
}
[bookmark: _Toc479684763]Integrate Pay by Bank app Popup for error handling
The Pay by Bank app Merchant Button Library provides a feature to display the Pay by Bank app branded error Popup for the payment transaction:
import com.zapp.library.merchant.util.PBBAAppUtils;

//(...)

// display PBBA error Popup (provide an android.support.v4.app.FragmentActivity, errorCode (optional), errorTitle (optional), errorMessage and callback parameters)
PBBAAppUtils.showPBBAErrorPopup(this, errorCode, errorTitle, errorMessage, callback);
	Parameter name
	Parameter description
	Parameter source

	activity
	The fragment activity in the Merchant App.
	Provided by the Merchant App

	errorCode
	The error code to display. It is appended to the errorMessage and is an optional parameter.
	Provided by the MerchantAapp if a custom error or it can be the error received from the Distributor gateway.

	errorTitle
	The error title to display. If not provided, a standard error title will be used.
	Provided by the Merchant.

	errorMessage
	The error message to display.
	Provided by the Merchant.

	callback
	PBBACallback implementation that receives callback events. Please see section ‘How to implement the Popup callback’ for sample code on how to implement the callback.
	Provided by the Merchant App

[bookmark: _Toc479341708]Table 5: 	Error mapping
The length of the strings displayed in the PBBA error dialog is not limited but the recommended lengths of these strings are:
Maximum 25 characters for the error title
Maximum 75 characters for the error message
Maximum 5 characters for the error code
How to implement the Popup callback
A callback will be received when the PBBA Popup is dismissed or when the PBBA button inside the error Popup is tapped.
A sample code of how this callback should be implemented is as follows:
import com.zapp.library.merchant.ui.PBBAPopupCallback;

//(...)

// display PBBA Popup (provide an android.support.v4.app.FragmentActivity, secureToken, BRN and callback parameters)
Final PBBAPopupCallback mPopupCallback = new PBBAPopupCallback() {
	onRetryPaymentRequest() {
		//will be called only when the Consumer taps on the ‘Pay by Bank app’ button on the PBBA error popup
		//the Merchant can retry submitting the payment request
	}
	
	onDismissPopup() {
		//will be called on PBBA Error popup when the Consumer taps on the top-right corner of the popup
		//and dismissed it
	}
}
[bookmark: _Toc479684764]Get payment status from Merchant backend
The Merchant should implement the logic of getting the status of the payment. This status change detection can be implemented in various ways and is up to the Merchant. One way to implement it is to poll the Merchant backend for status change when the Merchant App has displayed the Pay by Bank app (PBBA) Popup and the Merchant App is active (running in the foreground). There is no need to check the payment status while the Merchant App is in the background (for example, because the focus is forwarded to the CFI App). However, the status change detection can start as soon as the PBBA Popup is displayed because if the Consumer does not have a PBBA enabled CFI App installed, the PBBA Popup displays the PBBA code and the payment authorisation can happen in a separate device.
[bookmark: _Toc479684765]Display payment confirmation screen
The Merchant should display their payment confirmation screen once the payment status of the transaction is known.
[bookmark: _Toc479684766]Additional consideration for the integration of an E-COMM (two device) journey
There are no additional changes required for an E-COMM journey.
The Pay by Bank app Merchant Library framework automatically recognises that there is no PBBA enabled CFI App installed on the device and displays the E-COMM version of the PBBA Popup.
[bookmark: _Toc479684767]Additional API set
[bookmark: _Toc479684768]API to check if the device has Pay by Bank app enabled CFI App installed
Using this API, the Merchant App can check if the Consumer’s device has at least one Pay by Bank app enabled CFI App installed. Zapp recommends not to cache the response but call this API every time they want to check before any Pay by Bank app Popup invocation.
import com.zapp.library.merchant.util.PBBAAppUtils;

//(...)

// check if user's device support PBBA payments (provide an Activity Context as the single parameter)
if (PBBAAppUtils.isCFIAppAvailable(this)) {
 // the device has PBBA enabled CFI App installed
} else {
 // the device does not have PBBA enabled CFI App installed
}
[bookmark: _Toc479684769]API to invoke the Pay by Bank app enabled CFI App
The Merchant Library provides a feature to invoke the Pay by Bank app enabled CFI App outside the Pay by Bank app Popup. Zapp recommends not to use this function unless it is completely necessary:
import com.zapp.library.merchant.util.PBBAAppUtils;

//(...)

// invoke the PBBA CFI App (provide an Activity Context and secureToken parameters)
PBBAAppUtils.openBankingApp(/* activity */ this, secureToken);
This invocation happens automatically if the Merchant App calls the PBBA Popup invocation.
	Parameter name
	Parameter description
	Parameter source

	activity
	The activity in the merchant app.
	Provided by the Merchant App

	secureToken
	The unique token that identifies the payment request.
	< Consult Distributor Documentation >

[bookmark: _Toc479341709]Table 6: 	CFI App invocation mapping
[bookmark: _Toc479684770]Pay by Bank app Popup orientation change support
The Pay by Bank app Popups communicate to the Merchant App through the `callback’ parameter of the `showPBBAPopup’ API method. In case of orientation change (if the Merchant App supports rotation) this callback implementation usually collects garbage. As the FragmentActivity which provides the activity for the Pay by Bank app Popup gets destroyed and recreated during orientation change, the new FragmentActivity instance needs to `re-connect’ to the Pay by Bank app Popup in order to be able to receive its callbacks:
import com.zapp.library.merchant.util.PBBAAppUtils;

//(...)

@Override
public void onCreate(@Nullable final Bundle savedInstanceState) {
	super.onCreate(savedInstanceState);
	
	//(...)

	if (savedInstanceState != null) {
		//re-connect to the popup (provide an android.support.v4.app.FragmentActivity and callback parameters)
		PBBAAppUtils.setPBBAPopupCallback(this, callback);
	}
}
This call is not applicable if the Merchant App does not support rotation.

	PBBA Integrated Android Merchant Button
	
	Usage

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 2.0

	
	23 of 25
	

[bookmark: _Toc479684771]Sample code
This section describes a frame of a simplified sample implementation of the PBBA Integrated Android Merchant Button Library for the M-Comm journey. The code displayed in black relates to the PBBA Integrated Android Button Library. The code displayed in blue is Merchant App related.
This is not compilable code as it assumes some of the Merchant specific codebase.
import com.zapp.library.merchant.ui.view.PBBAButton;

public class MerchantActivity extends FragmentActivity {

 private CustomMerchantButton mButton;

 private MerchantPaymentDetails mPaymentDetails;

 @Override
 public void onCreate(@Nullable final Bundle savedInstanceState) {
	super.onCreate(savedInstanceState);
	
	mButton = (CustomMerchantButton) findViewById(R.id.custom_merchant_button);
	mButton.setOnClickListener(new View.OnClickListener() {
 	
		@Override
 		public void onClick(final View v) {
			submitPayment();
 		}
	});

	if (savedInstanceState != null) {
		PBBAAppUtils.setPBBAPopupCallback(/* activity */ this, mPbbaPopupCallback);
	}
 }

 private void submitPayment() {
	//the Merchant App executes e.g. an async task which submits the payment request to the Merchant gateway
	//loads its response e.g. in JSON format, parses it to a Java object which is called e.g. Transaction
	//then calls the merchantAppCallback / onPaymentSubmitted callback with this transaction object
	//or calls the merchantApp / onPaymentSubmitError callback if error happened during submitting the payment
	//to the Merchant backend
	final MerchantBackendSubmitPaymentAsyncTask submitPaymentTask
		= new MerchantBackendSubmitPaymentAsyncTask(mPaymentDetails, mMerchantAppCallback);
	submitPaymentTask.execute();	
 }

 private void getPaymentStatus() {
	//here the Merchant App e.g. can wait for 5 seconds not to put heavy load on its backend
	//then make a request to the Merchant gateway, load its response e.g. in JSON format, parse it to
	//a Java object which is called e.g. PaymentStatus
	final MerchantBackendPaymentStatusAsyncTask paymentStatusTask
		= new MerchantBackendPaymentStatusAsyncTask(mMerchantAppCallback);
	paymentStatusTask.execute();
 }

 private final PBBAPopupCallback mPbbaPopupCallback = new PBBAPopupCallback {
	public void onRetryPaymentRequest() {
		//this method is called only when the Consumer clicks on the ‘Pay by Bank app’ button
		//on the PBBA error popup
		submitPayment();
	}

	public void onDismissPopup() {
		//this method is called on any PBBA popup when the Consumer taps the dismiss button
		//on the top-right corner of the PBBA popup
		stopPollingForPaymentStatus();
		mButton.setEnabled(true);
	}
 };

 private final MerchantAppCallback mMerchantAppCallback = new MerchantAppCallback {
	public void onPaymentSubmitted(MerchantTransactionObject transaction) {
		//in case of standard m-Comm, this will invoke PBBA enabled CFI App automatically without
		//a PBBA Popup displayed
		//in case of standard e-Comm, this will display the PBBA Popup with the PBBA code
		PBBAAppUtils.showPBBAPopup(MerchantActivity.this,
			transaction.getSecureToken(),
			transaction.getBrn(),
			mPbbaPopupCallback);
		getPaymentStatus();
	}

	public void onPaymentSubmitError(String errorCode) {
		PBBAAppUtils.showPBBAErrorPopup(MerchantActivity.this,
			errorCode,
			getErrorTitle(errorCode),
			getErrorMessage(errorCode),
			mPbbaPopupCallback);
	}

	public void onPaymentStatusReceived(PaymentStatus status) {
		if (status == IN_PROGRESS) {
			getPaymentStatus();
		} else if (status == ERROR) {
			PBBAAppUtils.showPBBAErrorPopup(MerchantActivity.this,
				status.errorCode,
				getErrorTitle(status.errorCode),
				getErrorMessage(status.errorCode),
				mPbbaPopupCallback);
		} else {
			//for m-Comm payment finished, display Merchant payment status page
			//for e-Comm payment finished, dismiss PBBA Popup
		}
	}
 };

}

	PBBA Integrated Android Merchant Button
	
	Sample code

	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 2.0

	
	26 of 28
	

[bookmark: _Ref436217384][bookmark: _Ref436217396][bookmark: _Toc479684772]Appendices
[bookmark: _Ref479178069][bookmark: _Ref479178103][bookmark: _Toc479684773]Pay by Bank app Button and Popup configuration
The CFI App name used in the Popup can be configured using the `cfiAppName’ key. There are two options available:
cfiAppName = 1 (default)
Popup generally refers to `your mobile banking app’.
[image:]
The text in the Popup is “Log in to your mobile banking app”.

cfiAppName = 2
Pingit will be referenced in the Popup.
[image:]
The text in the Popup is “Log in to Pingit”.
It is important to mention that cfiAppName key change takes effect only when the default theme is selected (pbbaTheme=1).
	April 2017
	Confidential (PARTICIPANT CIRCULATION)
	Version 2.0

	
	28 of 28
	

image3.emf
Merchant Application

Merchant App Module Distributor PBBA PBBA Merchant Library CFI Gateway

Pay by Bank enabled CFI

App

Merchant Backend

5. start payment

5.4 secure token/ PBBA code

5.1: start payment

5.3 create merchant transaction

10.1 retrieve transaction details

10.2 transaction details

10. retrieve transaction details

10.3 transaction details

12. update payment status

12.1. Update payment progress

12.2 . Payment status updated

12.3. payment status updated

16. Poll for merchant payment status

7.10 poll for distributor payment status

7.11 payment status

16.1 payment in progress

16.2. poll for merchant payment status

16.3 payment status

17.1 Popup closed callback

18. Display payment confirmation message

based on merchant payment status

9.User

authenticates

11 User accepts or

declines payment

5.2 secure token/ PBBA code

5.1.2 secure token/ PBBA code

2. add item to shopping cart

2.1 item is added to the shopping cart

3. go to the checkout page

1. browse catalogue

4. Select payment method

(Pay by Bank app)

5.1.1: submit ‘request to pay’ to PBBA

15. CFI app invokes merchant app using ‘merchant callback url’

6. Display PBBA popup

7. poll for distributor payment status

7.1 ‘payment in progress’

7.2 poll for distributor payment status

7.3 ‘payment in progress’

7.4 poll for distributor payment status

7.5 ‘payment in progress’

7.6 poll for distributor payment status

7.7 ‘payment in progress’

7.8 poll for distributor payment status

7.9 ‘payment in progress’

8. invoke Pay by Bank app enabled CFI app using secure token

(on user interaction or automatically)*

12.4. payment status notification

17. Close popup

5.5 Poll for merchant payment status

5.6 payment in progress

4.1 User taps on merchant custom button

image4.png
= @ o A PRI

Open with

B Bank3

B Bank Too

JUSTONCE ~ ALWAYS

image5.emf
Distributor PBBA

CFI Gateway

Pay by Bank enabled CFI

App

Merchant Backend

1. browse catalogue

3. go to the checkout page

2. add item to shopping cart

2.1 item is added to the shopping cart

5. start payment

5.1: start payment

5.1.3 secure token/ PBBA Code

9. poll for distributor payment status

12.1: distributor payment status

5.1.1: submit ‘request to pay’ to Zapp

5.2 create merchant transaction

11.3: payment notification

10.1: retrieve transaction details

10.2: transaction details

11.1: update payment status

11.2: payment status update

10.3 transaction details

11.3: payment status updated

11. update payment status

10: user approves or cancels payment

8.1. poll for merchant payment status

8.6.1 merchant payment status

7: user authenticates

and enters PBBA code

4. Select payment method

(Pay by Bank app)

5.3 secure token / PBBA code

9.1 ‘payment in progress’

8.1.1 ‘payment in progress’

8.2. poll for merchant payment status

8.2.1 ‘payment in progress’

8.3 poll for merchant payment status

11 poll for distributor payment status

8.3.1 ‘payment in progress’

11.1. ‘payment in progress’

8.4 poll for merchant payment status

8.4.1 ‘payment in progress’

8.5 poll for merchant payment status

12 poll for distributor payment status

8.5.1 ‘payment in progress’

8.6 payment status

5.1.2 secure token/ PBBA code

10: retrieve transaction details

PBBA Merchant Lib Merchant App Module

5.5 display PBBA code in popup

5.4 show PBBA popup

13. dismiss PBBA popup

13.1 popup dismissed

4.1 User taps on merchant

custom button

14. display payment

confirmation message based on

merchant payment status

image6.png
zapp-merchant-library

» [manifests
» [java
v [iassets
» [Edfonts
[5i pbbaCustomConfig.properties
» [Cares
» (2 Gradle Scripts

image7.emf
Merchant Application

App PBBA Custom

Config file

App Shared Preferences

PBBA Merchant Library

PBBA Popup

Component

Get / Set “Open Banking App”

user choice

Load configuration

Merchant Custom

Button

image8.png
[Z Pay by Bank app

Tap the button below to open your
mobile banking app and log in to
complete your purchase

Open banking app

Pay with another device

Tap the button below if your mobile
banking app is on another device

Get [ZlCode

What s Pay by Bank app? >

image9.png
2 PaybyBankapp

Pickup your phone or tablet
| Loginto your mobile banking app
| selectPay by Bank app

Enterthe ¢l Code below

H Q K|[6 k ¢

Whatis pay by Bank app? >

image10.png
4 Pay by Bank app

Pay on this device

mobile banking app and logn to

Tap the button below to open your
complete your purchase

Open banking app

Pay on another device

Pickup your phone or tablet
| Loginto your mobile banking app
| selectpay by Bankapp.

Enterthe (] Code below

H Q K

Whatis Pay by Bankapp? >

image11.png
£ Payby Bankapp

None ofthe apps on this device
currently support Pay by Bank app.

Follow the steps below to complete
this purchase on another device:

Piccup your phoneor tablet:
| Loginto your mobile banking app
| Selctayby Bankapp

Enterthe £ Code below

Whatis Pay by Bankapp?

2 Pay by Bank app

Pay on another device

None of the apps on this device

currently support Pay by Bank app. Pickup your phone or tablet

| Loginto your mobile banking app
| SelectPay by Bank app
Enterthe (] Code below

Follow the steps on the right to
complete this purchase on another
device

(R x s][ar P

Whatis Pay by Bank app? >

image12.png
PN

Network error.

Network connection not available.
Please try to connect before using.

[Z Pay by Bank app

Whatis Pay by Bank app? >

image13.png
VA

Payment request expired

Tap on the button below to try again
(A9.3.1/A10.3.1).

[Pay by Bank app

What s Pay by Bank app? »

image14.tif
O\

None of apps on this device currently support
Pay by Bank app.

Follow the steps below to complete this
purchase on another device:

Pick up your phone or tablet

I Log in to your mobile banking app

I Select Pay by Bank app

Enter the @Code below

[k w][n s v

What is Pay by Bank app? »

image15.tif
2 Pay by Bank app

None of the apps on this device
currently support Pay by Bank app.

Follow the steps below to complete
this purchase on another device:

Pick up your phone or tablet
I Login to Pingit
I Select Pay by Bank app
Enter the [2 Code below

What is Pay by Bank app? »

image1.png
@ vocaLink

image2.png
Pay by
EFI Bagk app

